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0 My place within ATOMIUM
» Phd student under prof. Decin

v

Working on line radiative transfer
» Developing MAGRITTE together
with Frederik De Ceuster

» Phd goal: to make line radiative

cooling computationally feasible in TOMIUM
hydrodynamics simulations
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0 Introducing Magritte

(&) Magritte

» Open-source 3D NLTE line radiative transfer library

» Creates synthetic images of hydrodynamics simulations
» Written in c++4-, APl in python

» Available at https://github.com/Magritte-code/Magritte

r
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0 The computational challenges of line radiative transfer

1D Radiative transfer equation

gi(:c, v,n) =rn(x,v) — x(x,v)I(x,v,n) (1)

I monochromatic intensity, 17 emissivity, and x opacity.

Applying radiative transfer on hydrodynamics simulations (even in
post-processing), is computationally challenging.

» By definition, the equation is non-local
» Wildly different scales are involved

» Doppler shifts make it hard correctly treat the narrow line profiles

Computational improvements in MAGRITTE, up to 50 times faster.

Computational improvements to line radiative transfer in Magritte Fm



1 Outline

@ Computing line opacities/emissivities
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1 Computing line opacities/emissivities

For a single line:

Xij(z,v) = % (nj(z)Bji — ni(x)Bij) ¢ (w0, v) (2)
nij(w,v) = %m(ﬂﬁ)Az‘j@j(% v) (3)

in which ¢ is the profile function (e.g. Gaussian).
For all lines together:

X@,v)= Y xij(z,v) (4)
ij€lines

n(z,v) = Z ﬁij(%”) (5)

ij€lines
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1 Computational inefficiencies when computing total
opacity/emissivity

For any frequency, only a small fraction of the lines actually give a
non-zero contribution. (¢;;(v) =~ 0 far from the line center)

¢
$i(ve)=0
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1  Solving this inefficiency

» Define maximal frequency range

» Ignore all lines outside this range

web(e(®))obee®),)] o

in which C'is a constant (by default 10) and (57") is the maximal

max

relative line width at the point x in question.

Computation time improvement: O(Nl?nes) to O(Niines!n(Niines))

7 Computational improvements to line radiative transfer in Magritte Fm KULEUVEN



2  Outline

@ Analytically handling doppler shifts
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2 Importance of correctly handling doppler shifts

AT = /:1 x(x,v)dx (7)

0

Trapezoidal rule

A% Vo

X(x()vy)";X(xl?V) (8)

AT = (x1 — x0)

/

» Can fail to properly sample the line profile /é%
» Previously, add extra points to interpolate %%é
linearly /Z%/
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2 Handling the doppler shift in a single line

Vi1 Vo
1
AT = / x(x,v)dz (9)
Zo
For a single line, separate out the line profile

T+Az 4
Aty = / (@) ij(z,v)dz (10) /
T —
Xij/®ij ]

Integrate the line profile, obtaining (similar to Sobolev approximation)

Ari(v) = Ax (Xw‘(xo) : mm) <Erf(f(x1)2)A—V5rf(f(wo))>

(11)
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2  Total optical depth
Total optical depth obtained by summing
AT = Z ATZ‘J‘ (12)
ij€lines

» Far lines do not contribute
» No interpolation points necessary

» Computation time improvement: O(V - v) to O(1)
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3  Outline

© Other improvements
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3  Other improvements to Magritte

» Change in internal datatypes (smaller, thus faster)
> Automated testing + versioning
» A new, fast re-meshing method (see next slide)

> Memory-sparse variant of Feautrier solver
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3  Why re-mesh a grid

In De Ceuster 2020b, it has been proposed to re-mesh hydrodynamics
model for radiative transfer.

» Hydrodynamics model contain o
many points

)

» By re-meshing, we reduce the
amount of points

» Less points, thus faster
computations

50 00 150

S50 <10 -0 0
x (AU)

> Acceptable accuracy penalty Figure: Slice of PHANTOM (Price

et al 2018) binary wind model
from Malfait et al. 2021
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3 Re-meshed models

¥ (AU)

¥ (AU)

L

~150  -100

Figure: Re-meshed using recursive

Figure: Re-meshed using GMSH
subdivision

Timings for re-meshing: GMSH 173s, Recursive 3s
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3  Accuracy of re-meshing

Computed mean intensities
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4  Qutline

@ Combined effect of these improvements
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4  Timings (van Zadelhoff 1)
Van Zadelhoff NLTE benchmark models (Van Zadelhoff 2002).

Van Zadelhoff 1: Cloud without velocity gradient, single line.
Van Zadelhoff 2: Collapsing HCO+ cloud, 20 lines.

Time [s] | MAGRITTE 0.2.0 | MAGRITTE 0.0.2
Van Zadelhoff 1a || 8.1 19

Van Zadelhoff 1b || 47 89

Van Zadelhoff 2a || 12 598

Van Zadelhoff 2b || 22 1169

Roughly 2 times faster in case of a single line.
Roughly 50 times faster for 20 lines. O(N{. o) = O(Niines!n(Niines))
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4  Accuracy (van Zadelhoff 1)
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Accuracy (van Zadelhoff 2)

vanZadelhoff2a vanZadelhoff2b

fractional level populations [.]
fractional level populations [.]

relative difference [.]

relative difference [.]
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4 Conclusion

Significant speedups can be obtained with simple improvements.

Generally applicable improvements
» Efficiently ignoring far lines
» Analytically computing the optical depth

(&) Magritte

Get started using MAGRITTE for synthetic line observations. Consult
the extensive documentation at https://magritte.readthedocs.io/.

r
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@ Bonus slides: Comoving solver
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5 Yet another bottleneck in NLTE ray-based line
radiative transfer

In NLTE line radiative transfer, we want to compute the intensity
around each line self-consistently at each point.
» Narrow line profile functions require a dense frequency sampling
» Doppler shifts misalign the frequency discretization

» These misalignements inhibit the reuse of computed intensity

X

@ .T .T .T .T

23 Computational improvements to line radiative transfer in Magritte Fm KULEUVEN



5 A brief explanation on comoving frame RT

Similar to Baron et al. 2004
dI(z,v) dv 01

T = 0 v) = x(z,v)I(z,v) + AL (13)
X — static
. e e o T moving
vV
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5 Frequency matching

» Free choice of connecting frequency discretizations
» Numerical stability: do not extrapolate

» Thus connect with minimal frequency difference

Example moving solver oscillation Moving solver stabilization using freq match

— 050 [
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5 Boundary conditions

Boundary conditions are required on
the edge of the frequency discretiza-

tion =
- 4525
» Non-local, taking into account 42;

. V107
previously encountered 2 %
frequencies. 24’
Local, ignoring any previously -~ Boundary
computed frequency. Condition
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5 The comoving method applied to an actual model

Tested on a PHANTOM model of an outflow of a binary system
(courtesy of J. Malfait).

Computation algorithm time[s]
Feautrier 2510
Comoving (non-local bdy) | 753
Comoving (local bdy) 667

Timings of a single NLTE iteration, using a single line, 54 directions.

Relative differences comoving solvers vs feautrier on original grid

101 1 Comoving —
Comoving approx
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02 /
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